

Copyright Ò MobileCloud Networking Consortium 2012 - 2015

FUTURE COMMUNICATION ARCHITECTURE FOR MOBILE CLOUD SERVICES
Acronym: MobileCloud Networking

Project No: 318109

Integrated Project

 FP7-ICT-2011-8

Duration: 2012/11/01-2015/09/30

D3.1 Infrastructure Management Foundations ï
Specifications & Design for Mobile Cloud

framework

Type Report

Deliverable No: 3.1

Work package: WP3

Leading partner: INTEL

Author(s): Thijs Metsch, Peter Gray (Editors), List of
Authors overleaf.

Dissemination level: Public

Status: Draft

Date: 08 November 2013

Version: 0.9

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 2 / 255

List of Authors
¶ Tarik Taleb (NEC)

¶ Monica Branco (INOV)

¶ Keith Briggs (BT)

¶ Giuseppe Carella (TUB)

¶ Luís Cordeiro (ONE)

¶ Marius Corici (Fraunhofer)

¶ Luis M. Correia (INOV)

¶ Desislava Dimitrova (UBERN)

¶ Andy Edmonds (ZHAW)

¶ Marc Emmelmann (Fraunhofer)

¶ Lucio Ferreira (INOV)

¶ Alex Georgiev (CS)

¶ Andre Gomes (UBERN / ONE)

¶ Peter Gray (CS)

¶ Luigi Grossi (TI)

¶ Piyush Harsh (ZHAW)

¶ Atoosa Hatefi (Orange)

¶ Georgios Karagiannis (UTWENTE)

¶ Morteza Karimzadeh (UTWENTE)

¶ Sina Khatibi (INOV)

¶ Giada Landi (NXW)

¶ Thijs Metsch (INTEL)

¶ Faisal Mir (NEC)

¶ Julius Mueller (TUB)

¶ David Palma (ONE)

¶ Dominique Pichon (Orange)

¶ Anna Pizzinat (Orange)

¶ Bruno Sendas (PTIN)

¶ João Soares (PTIN)

¶ Daniele Stroppa (ZHAW)

¶ Bhavin Trivedi (INTEL)

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 3 / 255

Reviewers:

¶ Piyush Harsh (ZHAW)

¶ Álvaro Rodríguez (STT)

¶ Simone Ruffino (TI)

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 4 / 255

Versioning and contribution history

Version Description Contributors

0.1 Initial draft INTEL

0.2 Content gathering TI BT PTIN NEC INTEL CS NXW
ONE UTWENTE TUB INOV UBERN
ZHAW Fraunhofer Orange

0.3 Formatting/Editorial CS

0.4 Editorial/Restructuring INTEL

0.5 Final contributions TI BT PTIN NEC INTEL CS NXW
ONE UTWENTE TUB INOV UBERN
ZHAW Fraunhofer Orange

0.6 Revision for peer-review INTEL, CS, BT

0.7 Changes after peer-review TI BT PTIN NEC INTEL CS NXW
ONE UTWENTE TUB INOV UBERN
ZHAW Fraunhofer Orange

0.8 Revision for GA-review INTEL

0.9 Changes after GA-review TI BT PTIN NEC INTELCS NXW ONE
UTWENTE TUB INOV UBERN ZHAW
Fraunhofer Orange

1.0 Final version ready for submission INTEL, CS, SAP

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 5 / 255

Executive summary

This document presents the first results of Work Package 3 of the MCN project. It includes details on the

foundations for a Mobile Cloud Framework. It forms the basis on which the overall project can realize the

topics described in the Description of Work: to provide ñ[é] Mobile Network + Decentralised Computing +

Smart Storage as One Service = On-Demand, Elastic and Pay-As-You-Go.ò.

The title ñInfrastructure Management Foundations ï Specifications & Design for Mobile Cloud frameworkò

of this document already hints at the key components to this foundation. This document will present the

specifications of the foundations, which will later be deployed and used by the other work packages in the

project. This includes that during the first months of the project, all partners helped by creating State-of-the-

Art & Gap analyses based on requirements and architectures of new components. All this work leads to the

specifications presented within this document, and in doing so represents the work of the first months.

The foundations for the Mobile Cloud start with the specifications of the Networking part. As the project is

very much networking-orientated this will also be the entry point into the document. Based on the networking

specification, the next topic addressed is performance. The enhancement of performance is key, so that

Services, as described in work package 4 and 5, can run under a certain level of QoS. To be able to observe

those QoS levels a specification of a Common Monitoring System is presented next. The CloudController will

enable the overall orchestration of services, and in doing so build upon the networking, performance

enhancements and transparency/monitoring capabilities described in this document.

To verify the architecture of these foundational parts, the RAN-as-a-Service is described in the final parts of

this document. As a crucial part, the RAN-as-a-Service will show that using this foundation it is possible to

get insight into the foundation for the MobileCloud using for example the earlier described monitoring

system. The ability to bind existing and new technologies through the CloudController and offer them to

Services will lead to a platform for the MobileCloud.

Therefore the main contributions can be summarized as:

¶ Delivering enhanced networking foundations to support the MCN Services.

¶ Establish methodologies for performance testing which lead to optimisations which later can be

considered for Service deployment, provisioning and operation.

¶ Design of a Monitoring System for the overall platform and the Services running upon.

¶ Design of the CloudController which is the main entity which enables the end-to-end lifecycle

management of Services.

¶ Specification of an architecture to allow Radio Access Network (RAN) to be provided elastically and

on-demand to enterprise end users.

¶ Specification of a set of support services for Load-Balancing, Domain Name Systems, Analytics and

Database storage.

Overall a number of support and MCN Services are specified in this deliverable and will be offered out as-a-

Service: Load-Balancing-, DNS-, Monitoring-, Analytics-, Database- and RAN-as-a-Service. Specifications

for networking aspects, performance enhancement and the CloudController will link it all together, leading to

the enablement of the scenarios described in D2.1.

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 6 / 255

Table of Contents

1 INTRODUCTION ..15

1.1 How to read this document ... 15

1.2 Relationships between tasks ... 16

2 NETWORKING FOUNDATIONS ...18

2.1 Introduction ... 18
2.1.1 Problem description ... 18
2.1.2 Objectives .. 20
2.1.3 Requirements ... 20

2.2 Network-as-a-Service .. 21
2.2.1 General Concepts ... 21
2.2.2 Architecture ... 23
2.2.3 Relation to CloudController... 25
2.2.4 Inter Cloud Service Provider approach .. 26

2.3 Follow-Me-Cloud for session continuity .. 28
2.3.1 Required components .. 28
2.3.2 Controller architecture ... 29
2.3.3 OpenFlow-based Follow-Me-Cloud controller implementation .. 31

2.4 Extensions and considerations ... 34
2.4.1 OCCI Extensions ... 34
2.4.2 OpenStack Extension ... 35
2.4.3 Extensions for Follow-Me-Cloud .. 36

2.5 Relationship to other tasks ... 37
2.5.1 Monitoring of data centre internal network and connectivity services .. 37

2.6 Conclusions and future work ... 38

3 REAL-TIME PERFORMANCE OF INFRASTRUCTURE RESOURCE MANAGEMENT
FRAMEWORKS ..40

3.1 Introduction ... 40
3.1.1 Problem description ... 40
3.1.2 Objectives .. 41
3.1.3 Requirements ... 41

3.2 Performance analysis methodology ... 42
3.2.1 The USE Method ... 43
3.2.2 The Problem Statement Method .. 46
3.2.3 The Workload Characterisation Method .. 46
3.2.4 The Drill-Down Analysis Method ... 46
3.2.5 The Tools Method.. 47

3.3 Cloud OS/Cloud middleware comparison and testing ... 47
3.3.1 Underlying cloud technology... 47

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 7 / 255

3.3.2 Testing strategy .. 49
3.3.3 Performance Testing .. 51
3.3.4 Performance testing results .. 51

3.4 Performance optimisation .. 52
3.4.1 Hypervisor settings .. 52
3.4.2 Storage optimisation .. 53
3.4.3 Network optimisation .. 54
3.4.4 Workload specific optimisation ... 54
3.4.5 SmartOS .. 57
3.4.6 Admission Control Algorithms for MCN .. 58

3.5 Relationship to other tasks ... 59
3.5.1 Analytics-as-a-Service ... 59
3.5.2 Monitoring the performance of cloud infrastructure .. 59
3.5.3 CloudController ... 60

3.6 Conclusions and future work ... 60

4 COMMON MONITORING MANAGEMENT SYSTEM ..62

4.1 Introduction ... 62
4.1.1 Problem description ... 62
4.1.2 Objectives .. 63
4.1.3 Monitoring requirements identification ... 64

4.2 Monitoring -as-a-Service reference architecture model, concepts and information flows 66
4.2.1 General concepts .. 66
4.2.2 Common Monitoring Management System Reference Architecture ... 67
4.2.3 High level Functions .. 68
4.2.4 Functional Elements .. 68
4.2.5 Reference Points .. 70

4.3 Monitoring as a supporting service ... 71
4.3.1 Deployment, provisioning and disposal of MaaS .. 71
4.3.2 MaaS interactions with other MCN Services ... 73
4.3.3 Cloud Principles for Monitoring in MCN .. 77

4.4 Deployment examples ... 78
4.4.1 Ceilometer ... 78
4.4.2 Zabbix .. 80

4.5 Conclusion and future work ... 82

5 THE CLOUDCONTROLLER ..84

5.1 Introduction ... 84
5.1.1 Problem description ... 84
5.1.2 Objectives .. 85
5.1.3 Requirements ... 85
5.1.4 On standards and pragmatism .. 86

5.2 CloudController architecture ... 86
5.2.1 Overall architecture ... 87
5.2.2 Sub-modules of the CloudController ... 89
5.2.3 Service Dependencies .. 99

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 8 / 255

5.2.4 Interaction with Service Orchestrators and Service Managers .. 102

5.3 Deployment examples ... 115
5.3.1 First Prototype of Service Manager, Service Orchestrator and Service Development Kit 115

5.4 Conclusion and future work ... 118

6 RADIO ACCESS NETWORK-AS-A-SERVICE ..120

6.1 Introduction ... 120
6.1.1 Background .. 120
6.1.2 Problem description ... 123
6.1.3 Objectives .. 124
6.1.4 Requirements ... 124
6.1.5 Scenarios for RAN-as-a-Service .. 126

6.2 RAN-as-a-Service Reference Architecture Model, Concepts and Information Flows 126
6.2.1 General Concepts ... 127
6.2.2 Architecture Reference Model ... 128
6.2.3 High level Functions .. 130
6.2.4 Reference Points .. 131
6.2.5 Functional Elements .. 133
6.2.6 RANaaS Lifecycle ... 137

6.3 Ongoing resarch and next developments .. 141
6.3.1 BBU pool dimensioning .. 141
6.3.2 Management of virtual radio resources .. 142
6.3.3 Offloading Load from 3GPP RAN technologies to Wi-Fi... 144
6.3.4 Testing ... 146

6.4 Conclusion and future work ... 147

7 SERVICES OF CATEGORY SUPPORT ..149

7.1 Domain Name System-as-a-Service ... 149
7.1.1 Architecture Reference Model ... 149
7.1.2 Functional Elements .. 150
7.1.3 Reference Points .. 151
7.1.4 Conclusions ... 152

7.2 Load Balancer-as-a-Service .. 152
7.2.1 Architecture Reference Model ... 153
7.2.2 Functional Elements .. 154
7.2.3 Reference points .. 155
7.2.4 Conclusions ... 155

7.3 Analytics-as-a-Service ... 156
7.3.1 Architecture Reference Model ... 157
7.3.2 Functional Elements .. 158
7.3.3 Reference Points .. 158
7.3.4 Conclusions ... 160

7.4 Database-as-a-Service ... 160
7.4.1 Architectural reference model ... 160
7.4.2 Functional elements ... 161
7.4.3 Reference Points .. 162

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 9 / 255

7.4.4 Conclusions ... 163

8 OVERALL CONCLUSIONS ...165

9 TERMINOLOGY ...167

10 REFERENCES ...172

A NETWORKING FOUNDATIONS ...177

A.1 Related Work .. 177
A.1.1 Software Defined Networking foundations ... 177
A.1.2 SAIL Project .. 178
A.1.3 GEYSERS project ... 179
A.1.4 Metro Ethernet Forum ... 181

A.2 OpenFlow implementations ... 183
A.2.1 Flow management and differentiated services ... 183
A.2.2 Open vSwitch .. 183

A.3 Deployment examples ... 184
A.3.1 Deployment involving one CSP .. 184
A.3.2 Deployment involving two CSP .. 185

A.4 WorkFlow Examples .. 188

A.5 OpenFlow Controller Frameworks ... 190
A.5.1 FloodLight ... 190
A.5.2 TREMA ... 190
A.5.3 Ryu .. 192
A.5.4 OpenStack .. 195

A.6 OpenStack Designate.. 196

B REAL-TIME PERFORMANCE OF INFRASTRUCTURE ...199

B.1 Performance Evaluations ... 199
B.1.1 IP Multimedia Subsystem-as-a-Service (IMSaaS) .. 199
B.1.2 Evolved Packet Core-as-a-Service (EPCaaS) .. 200
B.1.3 Digital Signage System-as-a-Service (DSSaaS) .. 201
B.1.4 Content Delivery Network-as-a-Service (CDNaaS) .. 203
B.1.5 Radio Access Network-as-a-Service (RANaaS) .. 204

B.2 Hypervisor performance comparison ... 205

B.3 Performance Tests .. 205
B.3.1 CPU and RAM Testing .. 205
B.3.2 Network Testing .. 209
B.3.3 Storage performance measurements .. 213

B.4 Admission Control Algorithms.. 215
B.4.1 The basic problem.. 215
B.4.2 Realistic scenario ... 216

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 10 / 255

B.5 Tools for performance analysis ... 222
B.5.1 DTrace ... 222
B.5.2 SystemTap ... 224
B.5.3 FunkLoad ... 224
B.5.4 Databene Benerator ... 225
B.5.5 SLAMD ... 225
B.5.6 Geekbench ... 225
B.5.7 Phoronix Test Suite.. 225

B.6 Performance Monitoring in the Cloud ... 226
B.6.1 Performance Monitoring .. 226
B.6.2 Application Monitoring ... 227
B.6.3 Parameters applicable to infrastrastructure performance monitoring .. 228

C COMMON MONITORING MANAGEMENT SYSTEM ..229

C.1 State of the Art on monitoring solutions ... 229
C.1.1 data centre Monitoring Tools ... 229
C.1.2 Survey on further monitoring tools .. 234
C.1.3 Taxonomy on monitoring solutions ... 237

D CLOUDCONTROLLER ..238

D.1 Evaluation of Graph Models ... 238
D.1.1 TOSCA .. 238
D.1.2 CAMP .. 238
D.1.3 CloudFormation ... 239

D.2 Technology evaluation .. 240
D.2.1 Heat .. 240
D.2.2 Juju .. 242
D.2.3 CloudFoundry .. 243
D.2.4 OpenShift ... 245
D.2.5 Scalr ... 246

D.3 Deployment examples ... 247
D.3.1 Deploying Service Orchestrators bundles on OpenShift ... 247
D.3.2 OpenStack Heat for complex service orchestration ... 248

E RADIO ACCESS NETWORK-AS-A-SERVICE ..250

E.1 E-UTRAN Description and Protocol Architecture .. 250

E.2 eNB Radio Interface Layers .. 251

E.3 Functional split options between RRH and BBU ... 253

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 11 / 255

Table of Figures
Figure 1 MCN entities, highlighting the ones presented in the current deliverable. ... 15
Figure 2 MCN networking aspects ... 19
Figure 3 Cloud Service Provider ï High-level network setup .. 21
Figure 4 Network scope overview .. 22
Figure 5 Cloud Service Provider - Network architecture .. 23
Figure 6 Network Connectivity Provider ï Network architecture .. 24
Figure 7 Simple Service Template Graph ... 25
Figure 8 Connectivity between VMs hosted on the same data centre ... 26
Figure 9 Connectivity between VMs hosted on two different data centres .. 27
Figure 10 Aggregation of multiple cloud oriented network services in an inter-DC tunnel ... 27
Figure 11 The Follow-Me-Cloud controller architecture. ... 29
Figure 12 Handling of ARP packets by Follow-Me-Cloud controller. ... 30
Figure 13 OpenFlow-based Follow-Me-Cloud setup. .. 32
Figure 14 Intercepting DHCP Packets for Location Mapper. ... 33
Figure 15 Client ping latency with and without Follow-Me-Cloud. ... 34
Figure 16 Collection of network monitoring information ... 38
Figure 17 Example functional block diagram ... 44
Figure 18 The USE Method Checklist .. 45
Figure 19 Simplified view of OpenStack architecture. ... 48
Figure 20 Simplified view of CloudSigma architecture ... 49
Figure 21 Functional block diagram ... 50
Figure 22 Workload Placement .. 60
Figure 23 Overview of four monitoring domains and the MCN project ... 63
Figure 24 General concept of monitoring and relations .. 67
Figure 25 Common Monitoring Management System Architecture ... 68
Figure 26 Monitoring-as-a-Service Deployment and Provisioning .. 72
Figure 27 Monitoring-as-a-Service Disposal .. 73
Figure 28 MaaS Deployment life-cycle stage ... 75
Figure 29 MaaS Provisioning life-cycle stage .. 75
Figure 30 MaaS Runtime Mgmt life-cycle stage .. 76
Figure 31 MaaS Disposal life-cycle stage... 77
Figure 32 OpenStack deployment with Ceilometer .. 79
Figure 33 Zabbix data centre deployment example .. 82
Figure 34 Use cases for the CC .. 86
Figure 35 CloudControllerôs conceptual overview ... 88
Figure 36 Architecture of the Northbound-Frontend .. 89
Figure 37 Architecture of the Design Module .. 91
Figure 38 Architecture of the Deployment Module .. 93
Figure 39 Architecture of the Provisioning Module ... 95
Figure 40 Architecture of the Operation and Runtime Module .. 97
Figure 41 Architecture of the Disposal Module .. 98
Figure 42 Service- and Infrastructure Graphs ... 103
Figure 43 Registering a Service .. 105
Figure 44 Listing capabilities ... 105
Figure 45 initialising new SO instances .. 106
Figure 46 Deployment of SICs ... 108
Figure 47 Provisioning of SICs... 110
Figure 48 Runtime management of SICs .. 112
Figure 49 Disposal of SIC and SO instance .. 114
Figure 50 Screenshot of Cloud9 hosting prototype... 116
Figure 51 Screenshot of running SM/SO prototype .. 118
Figure 52 C-RAN architecture. ... 121
Figure 53 Smart Mobile Cloud architecture (extracted from (Werthmann et al. 2013)). .. 122
Figure 54 Physical infrastructure aspects of RANaaS reference architecture ... 128
Figure 55 RANaaS Architecture Reference Model. ... 129

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 12 / 255

Figure 56 RANaaS deployment procedure. .. 138
Figure 57 RANaaS provisioning procedure. ... 139
Figure 58 RANaaS scaling. .. 139
Figure 59 RANaaS Component Migration. .. 140
Figure 60 RANaaS dispose. .. 141
Figure 61 Management of radio resources in V-RAN. ... 143
Figure 62 Wi-Fi offloading architecture. .. 145
Figure 63 DNSaaS Architecture ... 150
Figure 64 LBaaS Architecture .. 154
Figure 65 AaaS Architecture .. 158
Figure 66 DBaaS Architecture .. 161
Figure 67 Sequence diagram detailing CC - DBaaS interactions. .. 163
Figure 68 Architecture overview (Murray 2012a) .. 178
Figure 69 GEYSERS architecture .. 180
Figure 70 Carrier Ethernet and the Cloud: MEF Focus Areas ... 181
Figure 71 Carrier Ethernet Network showing EVC with UNI and ENNI service demarcation points (MEF 2012) 182
Figure 72 Management orchestration workflow ... 183
Figure 73 Simple Graph request example ï deployment within one CSP .. 185
Figure 74 OpenStack dashboard snapshot of CSP A ï deployment within a single CSP ... 185
Figure 75 Infrastructure Template Graph request example ï deployment across CSP ... 186
Figure 76 OpenStack Dashboard snapshot of CSP A ï deployment across CSPs .. 187
Figure 77 OpenStack terminal snapshot of CSP A ï deployment across CSPs .. 187
Figure 78 Interactions with the Cloud Controller ... 188
Figure 79 Negotiation between CSPs ... 189
Figure 80 Negotiation by CC .. 189
Figure 81 Trema Framework vs. User Applications ... 190
Figure 82 Trema architecture .. 191
Figure 83 Architecture of a generic OF-based data centre.. 192
Figure 84 Multinode deployment of OpenStack ... 193
Figure 85 Physical Node & Ryu Initialization .. 194
Figure 86 VM Creation & Ryu ... 195
Figure 87 Overview of Moniker ... 196
Figure 88 DNSaaS with OpenStack .. 197
Figure 89 CPU Test: Compilation Speed (Apache) .. 206
Figure 90 Compilation Speed (Linux Kernel) .. 206
Figure 91 File Compression .. 207
Figure 92 Audio Encoding .. 207
Figure 93 Video Encoding .. 208
Figure 94 General RAM Performance .. 208
Figure 95 RAM test: Bandwidth ... 209
Figure 96 Internal network test: Throughput .. 209
Figure 97 Internal network test: Latency .. 210
Figure 98 HTTP connection speed (Apache Server) .. 211
Figure 99 HTTP connection speed (Nginx Server)... 211
Figure 100 SCP Connection speed (disk to disk) ... 212
Figure 101 FTP Connection speed (to disk) ... 212
Figure 102 Simple functional block diagram for storage performance testing ... 213
Figure 103 I/O read distribution as fingerprint of an application ... 214
Figure 104 I/O latency distributions for different type of hypervisors. .. 215
Figure 105 Cloud services system architecture ... 217
Figure 106 Ceilometer overview (Ceilometer 2013) .. 232
Figure 107 Comparison between different Monitoring Systems for data centre .. 237
Figure 108 Overview of TOSCA (Alex Henneveld 2013) ... 238
Figure 109 OpenStack Heat Architecture ... 241
Figure 110 JuJu overview ... 242
Figure 111 Overview of CloudFoundry (Brian Gracely 2013) ... 243
Figure 112 OpenShift Overview ... 245
Figure 113 Overview of Scalr (Scalr 2013) .. 247

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 13 / 255

Figure 114 Screenshot of creating a Software Stack using OpenStack heat. ... 249
Figure 115 Screenshot of a running Wordpress installation using OpenStack heat .. 249
Figure 116 E-UTRAN Architecture (3GPP 2013b). ... 250
Figure 117 The E-UTRAN user plane protocol stack (extracted from (3GPP 2011)). ... 251
Figure 118 The E-UTRAN control plane protocol stack (extracted from (3GPP 2011)). .. 251
Figure 119 X2 signalling bearer protocol stack (extracted from (3GPP 2011)). .. 251
Figure 120 Transport network layer for data streams over X2 (extracted from (3GPP 2011))... 251
Figure 121 MAC and PHY layer interaction in DL .. 252
Figure 122 Current functional split between RRH and BBU (LNA: Low Noise Amplifier, PA: Power Amplifier, RF:

Radio Frequency, ADC: Analog to Digital Converter, DAC: Digital to Analog Converter, IF: Intermediate). 253
Figure 123 Possible BBU-RRH function splits. ... 254

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 14 / 255

Table of Tables
Table 1 Task relationships .. 16
Table 2 Network architecture components: candidate technologies ... 25
Table 3 List of resources and corresponding metrics (Brendan Gregg 2012) ... 43
Table 4 Cloud stack parameters .. 47
Table 5 Performance Metrics .. 50
Table 6 Summary of test results ... 56
Table 7 Cross-Service monitoring requirements .. 65
Table 8 Per service monitoring requirements ... 66
Table 9 CMMS Reference Points ... 70
Table 10 Type of metering data that can be collected through Ceilometer... 79
Table 11 CC::Frontend.north interface definition ... 90
Table 12 CC::Backend.south Interface definition. .. 98
Table 13 List of CC's dependency services .. 99
Table 14 iaas::network_DNS.SI.conf and iaas::network_DNS.SI.DNSinterface defintion .. 152
Table 15 iaas::network_LB.SM interface definition ... 155
Table 16 Analytics::AaaS.SI.North and Analytics::AaaS.SI.South interface definition... 159
Table 17 Database::DBaaS.SI.DB interface definition ... 162
Table 18 MEF Ethernet Service Types with Port-based and VLAN-based Service definitions (MEF 2012) 182
Table 19 DSSaaS required ranges of specific metrics .. 203
Table 20 Examples for cloud .. 221
Table 21 Numerical results ... 221
Table 22 Monitoring Tools ï Comparative Table... 226
Table 23 Common performance parameters ... 228

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 15 / 255

1 Introduction

This deliverable will present the outcomes of the work carried out in work package 3 (WP3) entitled

ñMobileCloud Infrastructural Foundationsò of the MCN project. It shows the work achieved in the first eight

months of the work packages overall runtime. The work package started in month 4 and the work described in

this deliverable is captured up to M11. M12 was used to internally review the deliverables according to the

processes in place for the project.

First outcomes and highlights from each of the tasks are described in the overall conclusions of the document.

The specifications presented in this deliverable will build upon the work presented in Deliverable D2.1 (D2.1

2013) and the overall architecture described in Deliverable D2.2 (D2.2 2013). Moreover the work done in

deliverables D4.1 (D4.1 2013), D5.1 (D5.1 2013) and D7.2.1 (D7.2.1 2013) influenced the achievements

presented within this document. It is recommended that the readers of this document familiarize themselves

first with the Terminology and Overall Architecture described in Deliverable D2.2 (D2.2 2013).

The MCN architectural entities are represented in Figure 1, being highlighted the ones described in the current

deliverable. Into brackets are identified the deliverables where the remaining entities are described.

Figure 1 MCN entities, highlighting the ones presented in the current deliverable.

1.1 How to read this document

This document will present the foundations of a future MobileCloud. It is structured in a way that it guides the

reader through the individual components, from network, via performance optimization, monitoring into the

orchestration and finally to a Service using all these parts. In doing so, it will roughly follow the tasks present

in this work package:

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 16 / 255

¶ Task3.1 ñOpenFlow Extensions to OpenStackò will represent the Software-Defined Networking part.

¶ Task3.2 ñReal-time Performance of Infrastructure Resource Management Frameworksò will present

topics related to performance.

¶ Task3.3 ñCommon Monitoring Management Systemò will introduce for example the Monitoring-as-a-

Service (MaaS).

¶ Task3.4 ñCloud Controller, Algorithms, and Mechanisms for Virtual Infrastructuresò will introduce

the Cloud Controllerôs architecture.

¶ Task3.5 ñWireless Cloudò will introduce the RAN-as-a-Service.

With this approach, all work carried out in this work package is covered. Each ótaskô section will describe the

problems it intends to solve, the objectives & requirements in relation to the Description of Work (DoW

2012), and finally the specifications which leads to conclusions and future work. State-of-the-Art work is

presented in the Appendices for each of the sections. Where applicable, deployment examples will show first

prototypes implemented within the Task.

Following the ótaskô level sections, the Services of category support are listed, so that other work packages

can easily reference them. The services described within those sections mainly build on existing technology.

In comparison to that, the MaaS described in the section of Task 3.3, is a newly developed service.

All descriptions of Services try to follow the structure of 3GPP service descriptions, where applicable. The

level of detail might vary, as this deliverable tries to give a consistent and sufficient, yet crisp presentation of

each Service at an appropriate length.

All Architectural Artefacts are documented in FMC Diagrams. FMC stands for Fundamental Modelling

Concept (FMC 2013), and provides a lightweight way of documenting the specifications presented in this

deliverable. Sequences of message flows are documented using UML (UML 2013) sequence diagrams.

1.2 Relationships between tasks

Tasks and work packages are highly integrated within the MCN project. The executive summary has already

shown how the work from the tasks in WP3 build upon each other. A more detailed view of task

interdependence, as of M11, is shown in Table 1. It shows the kind of relationships between the tasks. For

example Task 3.1 provides its features on Software Defined Networking towards Task 3.5.

Table 1 Task relationships

 Task 3.1 Task 3.2 Task 3.3 Task 3.4 Task 3.5

Task 3.1
Networking

enhancements

Monitorable

network

Network

connectivity

SDN

capabilities

Task 3.2
Networking

enhancements

Performance

measurements

Performance

enhancements

Performance

enhancements

Task 3.3
Monitoring

capabilities

Performance

measurements

Monitoring of

the CC &

Services

Monitoring

capabilities

Task 3.4 CloudController uses the features exposed
E2E

Orchestration

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 17 / 255

Task 3.5 RANaaS consumes the features exposed

As mentioned earlier, each task in this document will detail their relationships in their respective sections.

In addition to task relationships within WP3, the relationships to other work packages and associated tasks are

identified:

¶ WP2 ï The specifications of all entities in this deliverable have been synchronized and driven by the

overall architectural work done in Task 2.3, while the business perspective on the work presented is

done in Task 2.2.

¶ WP4 & WP5 ï Task 3.1, 3.2 and 3.3 have been in particularly close contact with these work

packages. Questionnaires to gather detailed and specific requirements have been used as an

instrument for interaction. Task 3.4 has been driving the overall architecture, and therefore in close

contact with the Services using the CloudController. Task 3.5 is developing one of the Services using

the foundations described here, and therefore is used to validate the architectural decisions. Task 3.5

is in tight relation with WP4, where together they are building the access and core mobile network

architecture.

¶ WP6 ï Implementations of the entities described within this document will be deployed on the test

beds to finally enable the scenarios described in past deliverables.

¶ WP7 ï Some work carried out in this work package depends on standardization activities. They can

be influenced by implementations realized in the next project phase. For now the standards used in

this deliverable are listed and observed through work package 7. Next to this, technical outcomes

were disseminated through the social media channels. It is also noted here that several people from

this WP are contributing to the efforts of Standards Developing Organizations (SDOs).

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 18 / 255

2 Networking Foundations

The following sections describe the contributions from task 3.1, entitled ñOpenFlow Extensions to

OpenStackò.

2.1 Introduction

Due to the widespread usage of virtualization technologies with a promise to lower the operations costs, an

unprecedented number of services are being shifted to cloud. For deploying services on a global scale, the

cloud service provider (CSP) may offer resources across the globe for serving geographically distributed

customers. Fundamentally, the resources are composed of virtual machines (VMs), storage and networking

that in turn are residing in data centres (DCs) owned by the CSPs. With reference to virtual networking,

Software Defined Networking (SDN) is the emerging technology that aims at separating the network

switching functions (which need to process a huge number of packets with minimal delay) from the more

information intensive functions (which operate the overall networking rules) (also see appendix A.1.1). The

OpenFlow (McKeown et al. 2008) protocol is the primary candidate, among others, to become the standard

for SDN architectures for MCN to exploit, and will possibly propose the extensions needed to support the

architecture and the objectives. The Follow-Me-Cloud concept, allows for the seamless movement of VMs

across data centres with the constraint that the on-going sessions are not broken due to such a re-arrangement.

2.1.1 Problem description

A MCN Service is usually composed of atomic services (e.g. compute, storage and networking resources)

and/or support service. Their composition, correlation and interdependencies can be represented through a

Service Template Graph (STG) and, in terms of resources, can be translated into an Infrastructure Template

Graph (ITG) that describes the required support and atomic services through the a set of nodes and how they

need to be connected through the graph edges. It has to be noted that, depending on the location of the end-

points, each edge can be equivalent to a network connection within a single data centre or a network

connection between two data centres. The properties of each edge specify the Quality of Service (QoS)

requirements of the network connections, e.g. bandwidth, maximum delay and jitter, level of protection, etc.

The CloudController (CC) then has to set up the specified networking virtual resources which are either

provided by CSPs or by some third party Network Connectivity Provider (NCP). Figure 2 depicts the

relationship of the CC with the CSPs and the NCP with reference to the provided resources while a thorough

discussion on the Networking architecture as approached by MCN is provided in section 2.2.

Mainly, three types of communication need to be taken care of (Figure 2):

1. First of all, it has to be considered that one MCN Service instance (SI) does not necessarily map to a

single Service Instance Component (SIC), but might be implemented using a number of them and also

involve the usage of supporting services. This aspect highlights that the involved networking interfaces do

include, but are not limited to, the ones specified in mobile network standards. These communication

means are to be instantiated and run by the CSP.

2. Among the MCN objectives, there is the independence of the MCN SPs from the CSPs, implying that the

components of a specific SI might run on clouds administered by different providers. This means that a

further inter-DC network service is required to interconnect the SICs located on two different DCs. A

detailed discussion of these issues is reported in section 2.2.4.

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 19 / 255

3. Moreover, not all ñtelecommunication functionsò can be effectively implemented by virtual resources

running in a cloud. Some hardware resources are needed in order to meet performance requirements.

These hardware nodes also need to be connected to the MCN virtualized nodes. A similar requirement can

be also recognized by considering that MCN nodes will eventually need to be connected to the non-MCN

nodes of a bordering network, both on the data plane and on the control plane.

Other communications that are controlled by the MCN Services are at the moment neglected by the MCN

infrastructure. An example of these is the data plane communications that might, or might not, transit through

some MCN Services. Nevertheless, it is not excluded that the need might eventually arise in future to

reconsider those within the MCN networking issues.

Figure 2 MCN networking aspects

It is worth mentioning that while type ñ1ò and type ñ3ò communications are already (partially) supported by

OpenStack Neutron (see section A.5.4) and as CSPs might be adopting different technologies to provide

support for MCN Services, an open interface has to be defined, and the chosen approach, that is based on the

OCCI interface augmented with proper networking extensions, is detailed in section 2.4.1.

The Follow-Me-Cloud concept (see section 2.3) derives from the observation that the geographical location of

the virtual resources is relevant with respect to the services and in particular:

¶ the Quality of Experience (QoE) can be increased by optimizing the traffic path between the user location

and the VMs hosted in the remote data centre;

¶ under certain scenarios like user mobility, overloaded data centres, congestion, disaster recovery, content

caches etc. the data centre initially assigned for user traffic might become less optimal than others during

run-time;

¶ the micro data centres concept, aiming e.g. at caching the popularly accessed content close to the users,

has to be adapted also to be accessed by mobile terminals and thus it has to be moved to follow the usersô

movement without disrupting the service continuity.

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 20 / 255

2.1.2 Objectives

This chapter focuses on the Networking components needed to support the overall MCN objectives. The

planned scope was initially twofold, the first part concentrating on how the SDN concepts might be exploited

and even expanded to meet the MCN objectives and the second part is concerning solutions with the Follow-

Me-Cloud concept (DoW 2012 p. 52).

This chapter provides a thorough discussion on how the MCN networking issues fit into the chosen

OpenStack technology, where the SDN concepts and the OpenFlow protocol comes into help and what will

likely be the generic supportable networking models. At the time of writing this document the networking

details of MCN Services are mostly still being defined, therefore, there is no need for the definition of a new

Neutron (former known as Quantum). For supporting networking, already a number of plugins have been

contributed to OpenStack by various vendors even outside the MCN consortium. Nevertheless, the need for

extensions to OpenStack, including currently available plugins, has been identified for supporting the

networking for MCN services.

Moreover, an extension to what was initially planned in the DoW has been developed to cope with the need

for an interaction model with a Network Connectivity Provider (NCP), and some possible solution models are

herein presented.

The planned definition of the Follow-Me-Cloud concepts as well as the design with OpenFlow support are

then detailed and discussed within this task.

2.1.3 Requirements

Generic requirements for the MCN Networking have been identified and listed in section 6.2 of (D2.1 2013).

Those requirements are aim at allowing:

¶ the deployment of MCN Services on a virtual infrastructure, and though allowing connectivity between

the virtual computing resources implementing SICs (Req-A.025-027, Req-A.044, Req-A.047, Req-A.051,

Req-B.009, Req-B.012-013, Req-B.021-022); these computing resources might be provided by a single

CSP either located in a single or in multiple DCs or even by multiple CSPs (Req-A.014); the MCN

networking should empower connectivity in all these cases, also taking into account the possible

involvement of NCP (Req-A.016);

¶ the interconnection of MCN service instances with other domains, like other MCN service instances

(service chaining) or other Service Providers or e.g. non-virtualized nodes (Req-A.016);

¶ the scalability of the MCN service instance, in holistic terms, meaning both increasing (or reducing) of the

computing power of the networking resources and of any other resource in order to achieve some target

performance (Req-A.025-027, Req-A.043, Req-A.046);

¶ the run-time mobility of virtual computing resources between different geographical locations in order to

allow for specific mobility concepts like the Follow-Me-Cloud (Req-A.015, Req-A.045).

The Follow-Me-Cloud concept requires that other specific functionality should be incorporated in the cloud

infrastructure/management layer, and in particular:

¶ VM movement (live/cold, with or without storage) across two involved data centre instances that are

either operated within a single or different CSP domains (it is outside the scope of Task 3.1 to develop it);

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 21 / 255

¶ user plane traffic controlled by the OpenFlow controller entities within a cloud service provider domain to

allow for layer2/3 (or higher) information exchange between the two controller entities for preserving the

on-going sessions upon doing a resource migration;

¶ to lower operational costs, the necessary functionality should be automated and should be

programmatically accessible to the orchestrator entity coordinating the resource changes across the

federated cloud scenarios.

2.2 Network-as-a-Service

From a network connectivity service perspective there are two distinct service providers in MCN, the CSP and

the NCP (D2.1 2013). The former provides virtual infrastructure services that are composed by computing,

storage and network virtual resources. The latter, the NCP, provides pure network services like point-to-point,

Virtual Private Network (layer 2 or layer 3), or Internet access. The relation between these two stakeholders

and the remaining MCN stakeholders can be seen in Figure 4-1 in (D2.1 2013). The CSP provides services to

the Application Services Provider (ASP), Support System Provider (SSP), Mobile Core Network Provider

(MCNP), Radio Access Network Provider (RANP) and finally to the End User. On the other hand, the NCP

may provide services to any MCN stakeholder.

This section provides a description of the CSP and NCP as providers of networking connectivity services, to

which we refer to as Network-as-a-Service (NaaS) providers, and how they fit into the overall MCN project.

The remainder of this section is organized as follows. First, in section 2.2.1 some general concepts are

provided. Then, section 2.2.2 presents the architecture of both providers, while their relation with the CC is

described in section 2.2.3. Finally, section 2.2.4 provides some internals regarding the Inter CSP approach.

2.2.1 General Concepts

MCN considers the CSP network to be OpenFlow based. In other words, a network based on OpenFlow

Switches (OFSs) that interconnects multiple servers which are also OpenFlow enabled (e.g. via

OpenVSwitch). The CSP network also connects to external domains, i.e. to the Internet and other possible

dedicated connections such inter-DC connections. There is also the case, namely in micro-DCs, of dedicated

connections/links between the DC premises and RAN antennas. Figure 3 illustrates, from a high-level

perspective, the network setup of the CSP.

Figure 3 Cloud Service Provider ï High-level network setup

With respect to the NCP, this is seen as a provider of dedicated connectivity services. These services can be

for example: between two or more DCs; between DCs and non MCN-nodes - e.g. an enterprise end-user site

OpenFlowenabled resources

Cloud Service Provider

OpenFlowSwitch

Gateway RouterDedicated Connectivity Service

Host Server

Link

Antenna

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 22 / 255

that hosts a legacy EPC component. As already stated in D2.1 (D2.1 2013), the NCP stakeholder allows for

splitting up into more fine-grained stakeholder roles (e.g. one NCP per Telco provider) however, considering

that this is not the focus of the project, we only assume one NCP for our purposes. Unlike the CSP, no specific

network technology is considered for the NCP. It is considered that the NCP provides suitable interfaces to be

used to request the creation and/or manipulation of these dedicated connectivity services. The internal control

and management tools implemented within the core transport network will transparently enforce such services

by configuring the specific devices. The implementation of these services can be done in line with current

standardization bodies, such as the Metro Ethernet Forum (MEF). Details on the work being carried out by the

MEF can be found in Appendix A.1.4.

Figure 4 provides an overview of the MCN networking scope, within the CSP, the NCP and the enterprise

end-user are shown. Although MCN has its own particular networking specificities towards this type of

scenarios that make it a unique research activity, other projects have looked at similar subjects and have

worked on concepts that can serve as a basis for MCN. The SAIL and GEYSERS Project are two examples,

and relevant details to MCN on both projects can be found in Appendix (A.1.2, A.1.3).

Figure 4 Network scope overview

Additionally, the NCP can provide other types of services such as flow management/optimization related

services. This latter type of service could be provided in cases where the NCP network is OpenFlow enabled

(whether fully or partially). The service would allow a customer (e.g. EPCaaS SP) to manage flows that

involve a set of IPs that are under the administration of the customer. Deliverable D4.1 (D4.1 2013) details a

possible Distributed Mobility Management (DMM) solution and its integration into a virtualized EPC that

would rely on such a service provided by the NCP. The possible study of such a NCP service will be

evaluated during the next year.

The provisioning of connectivity between data centres and RAN (i.e. to interconnect the RRHs to the micro-

data centres) brings strong requirements in terms of QoS, especially for what concerns the bandwidth and the

delay constraints. In order to offer intra-data-centre networks able to meet these specific requirements, the

CSP needs to adopt external and specialized routing algorithms beyond the ones natively implemented by the

SDN controller. These algorithms will be designed to apply dedicated objective functions and metrics related

to the given QoS constraints and will run on the topology describing the capabilities of the data centre

network, in terms of switching technologies and TE characteristics. Better performance in terms of bandwidth

and delay may be obtained adopting optical switches within the data centre network (still OpenFlow based). It

should be noted that, in order to support the description and configuration of optical resources, specific

OpenFlowSwitch

Gateway RouterDedicated Connectivity Service

Host Server

Link

Antenna

OpenFlowenabled resources

Cloud Service Provider

OpenFlowenabled resources

Cloud Service Provider

Network Connectivity Provider
Enterprise End-User Site

Internal Network

Internal Network

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 23 / 255

optical-oriented OpenFlow protocol extensions must be adopted on the southbound interface of the SDN

controller managing the data centre network. The support of optical ports has been introduced since the 1.4.0

version of OpenFlow (currently under ratification), while standardization activities about further OpenFlow

extensions for optical transport networks are still in progress within the Optical Transport working group of

the Open Networking Foundation (ONF). The interconnection between the RRH and micro-data-centres

supporting CPRI protocol would assumed to be static. However, once the RRH traffic is entered in the micro

data centre, the SDN control application needs to update the associations with the BBU entities residing in the

VMs in the micro-data-centre. Task 3.5 would investigate the dynamic associations between the RRH and

BBU pools based on certain radio QoS constraints. However, task 3.1 would investigate the networking

aspects for supporting such dynamicity covered by task 3.5 during the next project phase.

2.2.2 Architecture

The CSPôs network architecture is composed by six main components and is depicted in Figure 5.

Figure 5 Cloud Service Provider - Network architecture

The functional elements of this architecture are:

Á Frontend ï component that exposes network connectivity services to external entities and allows the

provisioning and management of those services. This component is the entry point to the Network

Management System. It is important to note that the way services are expressed is closely related to the

Infrastructure Template Graph (ITG) definition.

Á Network Management System ï framework that ensures the life-cycle of all network connectivity

services within the CSPôs domain. The Network Management System is part of the CSPôs Cloud

Management System, system responsible for managing the entire CSP structure, in order to allow a

consistent configuration and re-configuration of the entire CSP environment.

Cloud Service Provider

Cloud Management System

R

OpenFlow enbaled
resources

Network Frontend

Netwok Management
System

OpenFlow Controller

OpenFlow Control Adaptor

User

DB

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 24 / 255

Á OpenFlow Control Adaptor ï component responsible for the translation between technology

independent commands sent from the Network Management System and the technology dependent

commands expected at the north bound interface of the OpenFlow Controller (OFC).

Á OpenFlow Controller ï component able to modify the behavior of the networking resources via the

OpenFlow protocol. The control of the CSPôs network relies on this element and is independent of

specific network topology.

Á OpenFlow Enabled Resources ï a set of resources that support the OpenFlow protocol. These resources

can be: OpenFlow switches (whether hardware or software).

Figure 6 Network Connectivity Provider ï Network architecture

The NCP architecture, depicted in Figure 6, is mainly composed by four components:

Á Frontend - component that exposes network connectivity services to external entities and allows the

provisioning and management of those services. This component is the entry point to the Management

System. Also in this case the expose and definition of services is related to the ITG definition.

Á Management System ï similar do the Cloud Management System, it is the system responsible for

managing the entire NCP structure, allowing a consistent configuration and re-configuration of its entire

environment.

Á Resource Controller ï component able to modify the behavior of the networking resources

independently of specific network topologies. Unlike the CSP, the NCP does not rely on any specific

network technology.

Á Resources ï network resources, e.g.: routers, switches. No specific technology is considered in the NCP.

2.2.2.1 Components

This section presents a preliminary overview of possible matches between the CSPôs network architecture

components and existing solutions in terms of software tools and interfaces. This initial overview will feed the

future software design activities (planned for the second year of the project) that will take the final decisions

about software baselines and foundations.

R

Network Connectivity Provider

Frontend

Management
System

Resources

User

DB

Resource Controller

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 25 / 255

Table 2 Network architecture components: candidate technologies

Architecture component Candidate software tool

or interface

Notes

Network Frontend Neutron API The APIs exposed by Neutron to provide

networking services between devices

managed by OpenStack compute service. The

current version is v2.0 and allows managing

three main types of entities (network, subnet,

port) through the common CRUD operations.

OCCI The network part of the OCCI specification

delivered by OGF can be used to request

networking resources through a REST

interface.

OCNI A cloud networking extension to OCCI

developed under the European project SAIL

(SAIL 2013).

Network Management System Neutron Neutron is the OpenStack component

dedicated to the Networking-as-a-Service. It

is considered as the reference choice for

MCN software development and extensions.

OpenFlow Control Adaptor OpenStack Neutron Plugin

API and OpenFlow Plugin

The OpenFlow plugin must be chosen

according to the specific OFC to be adopted.

Plugins for Floodlight, Ryu and Trema OFCs

are currently available.

OpenFlow Controller Trema A detailed description of these controllers is

available in appendix A.4. The selection of

the reference controller will take into account

multiple criteria, like the supported

OpenFlow version, the maturity of the code,

and the possibility to easily implement the

required extensions and functionalities.

Floodlight

Ryu

2.2.3 Relation to CloudController

The CC relates all services, including networking services supported by the CC in a graph like structure (see

chapter 6). A node in this graph structure maps to a SIC. Edges in the graph itself are also provided by

services and for the most part the service is the networking service that is developed in task 3.1. From the

perspective of task 3.1 and the CC, the requirements supplied to the CC are abstract with how they are

executed and managed from the networking service implementation. From the abstract and logical perspective

the following simple graph example shows how two atomic compute services are related and how the

networking parameters are supplied.

Figure 7 Simple Service Template Graph

In the diagram of Figure 7 the atomic compute service nodes are assigned properties that are related to what

its compute capacity should be, what the operating system should be running and where that compute service

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 26 / 255

should be placed geographically. The edge representing the atomic network service has properties such as

latency and response time. The CC on receiving this information will then understand for example that:

1. A VM should be created in the region of London with the other additional properties (Cores, RAM,

Location)

2. A VM should be created in the region of Dublin with the other additional properties (Cores, RAM,

Location)

3. Both VMs should be connected to each other over a virtual network that spans the London and Dublin

data centres. This virtual network needs to be created with the specified latency property.

These requirements will be received by the CC and will trigger the decisions needed to be made by it and how

it needs to setup the atomic networking services, whether they are internal to a single CSP or if they are

between two CSPs.

In the case that the networking is purely internal to a single CSP (i.e. the VMs share the same geographical

location) the virtual network is easily setup using technologies like Ryu, Trema, etc. (See appendix A.4). In

the case that the networking spans between two geographical locations and so therefore separate infrastructure

management and/or service providers, an additional step of inter-service provider path establishment needs to

be carried out. How this creation of the ñbridgingò network can be realized is detailed in the following section.

2.2.4 Inter Cloud Service Provider approach

Networking in the MCN architecture supports several scenarios, with connectivity services established

between VMs located in the same data centre, or between VMs distributed in different data centres. As shown

in Figure 8, assuming a DC internal network based on OFS, the connectivity between two VMs hosted in two

different servers within a single data centre can be simply established through the enforcement of policies

(e.g. the configuration of routes) on a given group of OFS. This configuration is usually performed by a

centralized OFC that sends commands to the network devices through the OpenFlow protocol. The OFC

exposes on the north-bound side an operational interface to allow the CC to manipulate the desired

connectivity resources.

Figure 8 Connectivity between VMs hosted on the same data centre

On the other hand, as shown in Figure 9, the connectivity between VMs hosted on different data centres

requires the configuration of network resources in three different segments: the internal network of the two

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 27 / 255

data centres, including the gateway router at the edge of them, and the legacy transport network in the middle.

As in the previous case, the configuration of the intra-DC network is enforced by the two local OFCs, under

the supervision of the CC. On the other hand, the management of the inter-DC connectivity is not directly

handled by the CSPs and an interaction between the CC and the third party systems responsible for the

management of the legacy transport network is required (the NCP).

Figure 9 Connectivity between VMs hosted on two different data centres

The inter-DC connectivity is usually provided by one or more network operators and requires the preliminary

establishment of suitable SLAs (also see Deliverable D5.1 (D5.1 2013)) between the different actors involved

in the scenario, i.e. CSPs and NCP. It should be noted that the network topology managed at the upper level

components (i.e. SO and CC) is abstracted through the set of parameters defined in the properties of the

STG/ITG edges (representing the network services) and it is fully independent on the specific technologies

actually deployed on the legacy network. The NCP will provide suitable interfaces to be used to request the

creation and/or manipulation of the inter-DC connections, while the internal control and management tools

implemented within the core transport network will transparently enforce such services configuring the

specific devices. Moreover, the level of granularity managed at the inter-DC level is typically coarser than the

per-tenant network service instance granularity managed at the intra-DC level (Figure 10), with multiple

connections between distributed VMs aggregated in single tunnels of larger size on the inter-DC segment.

Figure 10 Aggregation of multiple cloud oriented network services in an inter-DC tunnel

The inter-DC tunnels are flexible entities that can be managed through common create-update-delete

operations like any other resource. However, the actual mechanisms to be adopted to manage their lifecycle

depend on the agreements between cloud providers and network operators, as well as the strategies for

resource utilization within each domain. A possible approach can be based on the sporadic setup and tear-

down of inter-DC tunnels that will be scaled up and down according to the actual requirements of the cloud

services. The frequency and size of tunnel modifications can be regulated through policies. In general,

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 28 / 255

frequent upgrades with limited steps allows to keep the dimension of the inter-DC connectivity more aligned

to the real-time requirements of the cloud service instances in place with a better utilization of the network

resources, but requires more complex interactions and could be unsuitable for highly dynamic scenarios.

The details of the workflows and procedures adopted in MCN to provide and manage inter-DC connectivity in

scenarios involving multiple CSPs are analyzed in Appendix A.4.

2.3 Follow-Me-Cloud for session continuity

For deploying services on a global scale, the CSP may offer resources (VMs, storage, and networking) across

the globe for serving geographical distributed customers. Naturally, most of the traffic should be served by the

nearby location in a DC. However, such an initial allocation might not be optimal over the life-cycle of a

particular service due to internal as well as external factors such as user mobility, DC load situations,

dependency on other services (e.g. content caches). The Follow-Me-Cloud technology offers seamless virtual

resource movement (e.g. VM) across service provider domains while also preserving the ongoing sessions.

Hence, the technology could be used for optimizing both resource management and end user QoE by a

management system in a cloud environment. Given the programmatic access of the technology through APIôs,

MCN Services may also use the technology through the SO entity in a cloud deployment.

2.3.1 Required components

For simplicity we consider the scenario of optimizing a user QoE and identify the following functions for the

Follow-Me-Cloud concept:

¶ detection of user movements,

¶ selection of optimal service location, and

¶ Service migration.

It is important to note that the functions themselves are independent of any underlying technology, however,

from a task 3.1 perspective in general OpenFlow protocol is assumed. Please refer to (Tarik Taleb and Faisal

Mir 2013) for a detailed description. However, a brief description is outlined here for the key components:

Movement Detection, Location Selection and Service or VM migration.

Most technologies have some inherent means of detecting changes of location by observing the change in

network attachment point. However, such change can be detected either directly or indirectly. For MCN, a

direct observation could be to look at the network attachment point of the resource that is hosted in a CSP

domain. However, indirect movement detection can be done by looking at the Layer 3 identifier used by the

user equipment (UE), since such identifiers are generally attributed as location dependent. A change of this

identifier commonly signifies a change in location.

The location selection is a key function that operates over the life-cycle of a Service and selects a new location

for the identified resources. The location selection details depend on a specific algorithm (e.g. cost function)

and are outside the scope of the work that is carried in task 3.1. However, from the networking perspective it

is assumed that such changes will eventually be made available through a new configuration of service

instance (graph) and the new mappings will require certain updates on the network configurations. This

should also preserve any constraints on the links that is required on the new location.

In an IaaS environment it is assumed that services are provided by virtual resources. For the remaining

sections we will assume that these are realized using VMs). For simplicity, we assume that either the VM

itself is moved from one location to another one or the traffic of the VM is redirected to another location

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 29 / 255

where another VM is provisioned for handling the incoming traffic. If the VM needs to be moved then it is

assumed that the CSP supports the necessary functionality for moving the required VM images in live/cold

mode with or without storage support. Eventually, the traffic needs to be re-directed in all case. However,

given the VM migration is supported by the CSP, the networking domain is still managed by different

controllers e.g. OFC. Further, the routable IP address ranges managed by the DC are different. For seamless

migration, the controller entities in two domains need to co-ordinate for preserving the data plane traffic.

2.3.2 Controller architecture

Figure 11 shows a possible Follow-Me-Cloud controller architecture. It is important to note here that the

architecture itself is independent of any underlying technology. However, from a task 3.1 perspective we

assume the underlying architecture supports OpenFlow protocol and each functional component is outlined in

the context of OFS and controller entity. The OFC acts as a driver for installing traffic forwarding rules and

the actual application logic is encapsulated in the controller entity. Further, each VM is associated with a

location (e.g. home) that is known to the controller.

Figure 11 The Follow-Me-Cloud controller architecture.

For correctly installing forwarding traffic rules into the OpenFlow switch, each client and VM is linked to a

home location. This is based on the IP address allocation and gateway settings configured in the VM. The

configuration settings may be changed by the administrator during the service time and the database is

accordingly updated. Such configuration also holds for clients in the client network. Given the home location

is known to the controller, if any traffic from a particular client or VM appears on a different network than its

home location, the Location Manager updates the status for that entity to be in a Visited Network/Location.

Hence, the Location Manager always keeps track of the current location of clients and VMs in home and

visited networks.

Given the home and visited locations of both client and VMs are known to the Follow-Me-Cloud controller,

the Location Mapper module optimizes the path characteristics by selecting the appropriate data centre

location for the VM. Such control logic can be mapped on the geographical location of the data centres, path

characteristics metrics based on average delay, load or even congestion situations between the client and data

centre networks. It is assumed that the necessary API for VM initiation, termination and movement are

provided the cloud infrastructure software.

The actual VM migration is carried out by the CSP provided by e.g. OpenStack or any third party software

like VMware. However, orthogonal to a particular infrastructure, the Follow-Me-Cloud controller shall be

able to detect when a VM has been actually moved to a new location. The Mobility Detector function keeps

track of the flow entries installed in each OpenFlow virtual switch instance pertaining to home and visited

locations. The OpenFlow rules for home locations are pro-actively installed in the switch. However, for a

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 30 / 255

visited network, no such rule is installed. When traffic for a newly migrated VM hits the OpenFlow switch of

a visited network, it may result in the fact that the switch does not find an appropriate entry in the flow table.

Afterwards, the packet should be forwarded to the controller which compares the location information with

IP/MAC addresses to ascertain that VM has been indeed moved to the visited network.

Generally VMs and clients are configured with default gateway settings. Once a VM is moved to a new

location it is not necessary that the default gateways settings in the visited network are the same as home

location. Hence, certain parts of L2 functionality have to be isolated from the VM and instead pushed to the

controller entity. For ARP packets, both request and response types are explicitly forwarded to the Follow-

Me-Cloud controller. Figure 12 shows a possible message sequence, upon receiving an ARP request from a

VM, the controller answers with an appropriate response. The response could be constructed using the

controllerôs knowledge of the L2 information of the attached end-points, ARP packet itself (IP/MAC etc.) and

including the gateway. The controller may use the PACKET_OUT OpenFlow command instructing the switch

to send the ARP reply on the switch instance/port on which the original request was received. On the end-

host, once the ARP reply arrives, the ARP cache is updated. In contrast, the ARP cache at the router is still

stale because the controller replied on behalf of the router. Subsequently, when an IP packet arrives at the

router for that particular end point, it also generates an ARP request which is again forwarded to the

controller.

The IP address ranges managed by data centres can be overlapping and the first hop setting may not be

consistent across subnet boundaries. For preserving end host data plane traffic, a Packet Manipulator module

is introduced at the controller for creating a ñvirtual tunnelò within the visited network segment. The ñvirtual

tunnelò operates by re-writing the IP address field within the packet IP header for each outgoing packet from

the VM to outer network. The original IP header is restored for the packet when the last hop in the visited

network segment is reached. The same technique is applied for all the incoming traffic to the VM. This is

achieved by modifying the set of OpenFlow rules installed in the visited network.

Figure 12 Handling of ARP packets by Follow-Me-Cloud controller.

The client location is dynamic and beyond operator control. However, based on a clientôs location, the optimal

location of a VM can be decided. Therefore, a DHCP server related component can be introduced in controller

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 31 / 255

such that it can parse the DHCP packets for getting client or VM location updates. The amount of DHCP

traffic is small therefore DHCP overhead is deemed to be negligible. Figure 14 portrays the flow of messages

exchanged among client, Follow-Me-Cloud controller and DHCP server till a connection is established

(restored) between the client and an adequate data centre, based on their locations. Of particular interest, Step

10 in the figure shows that the client machine successfully acquired a new IP address and based on the current

client location the decision for VM migration can be made.

2.3.3 OpenFlow-based Follow-Me-Cloud controller implementation

Based on the controller architecture outlined in Figure 11, the following subsections outline a possible

Follow-Me-Cloud controller implementation that is based on NOX. For validation, the controller entity is

assumed to be aware of:

1. the virtual switch instances and their data path identifiers on the physical OpenFlow switch,

2. the VM identifiers (VMware 2013) (namely the IP and MAC addresses),

3. the location and IP addresses of each default gateway in the test bed,

4. the OpenFlow switch ports identifiers at which the data centre, router and client networks are

connected,

5. the IP address ranges managed by each DHCP server both for client and DC networks, and

6. the locations of distributed data centres that can either be part of the operator network or could be

autonomous domains.

2.3.3.1 Experimental setup

Figure 13 shows the overall experimental setup which consists of DCs hosting VMs, client network based on

WLANs, routers and a NOX based Follow-Me-Cloud controller that are all connected to ports of an NEC IP-

8800 OpenFlow switch. For simplicity, each DC in the cloud is modeled by a VMWare ESXi hypervisor.

Each ESXi host is equipped with two 1Gbps network cards for forwarding the management and OpenFlow

traffic over the network. A virtual network topology is defined inside the ESXi host by two vSwitches (soft-

switch) where each physical NIC is connected with each soft-switch instance. The ESXi host manages the VM

resources that run the standard Windows XP OS. Further, each VM is configured with two virtual NICs

(vNIC) that are connected with the virtual network through the soft-switches. One vNIC carries the

management traffic (Charu Chaubal 2007) and the other NIC carries the OpenFlow traffic. The storage space

is shared between the two data centres and is accessed by the standard iSCSI protocol. The DCs are remotely

managed by the VMWare vCenter software.

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 32 / 255

Figure 13 OpenFlow-based Follow-Me-Cloud setup.

Furthermore, the client network consists of two WLANs. Given the client and DC networks, a router entity is

used for correctly forwarding traffic among different network segments. For simplicity, the router acts as the

first hop for traffic originating from client and DC networks. The Linux router runs DHCP servers and Linux

Traffic Control for controlling the path characteristics (e.g., delay and congestion) between the two network

segments. From the physical OFS perspectives, four virtual switches (VLANs) are used for separately

carrying the traffic of the two data centres and the client network. The Follow-Me-Cloud controller manages

the forwarding behavior on the four VLANôs and also monitors the path characteristics between a data centre

and the client network and that is for resource management optimizations. For live VM migration, the

VMotion® (VMware 2009) cloud infrastructure technology from VMware is used. VMotion® traffic is

mapped on the management network whereas all active communication between the VM and remote users are

managed by the OpenFlow network.

2.3.3.2 System Execution and Performance Evaluation

Figure 13 shows the experimental setup where we configure the queue parameters for each virtual interface

using the Linux Traffic Control modules on the Linux machine. Without any purposes in mind, the

communication delays between a client network and its optimal data centre and between a client network and

its ñsub-optimalò data centre are set to 1ms and 50ms, respectively. Figure 15 shows the ping latency between

the client and its corresponding VM hosted in the remote data centre. That is considering two scenarios,

namely when Follow-Me-Cloud is used to enable VM migration and when it is not used. When the Follow-

Me-Cloud is not used, the ping latency remains equal to 50ms. The initial 150ms high latency is mainly

attributable to OpenFlow rules when the new traffic arrives at the controller. In contrast, when the Follow-Me-

Cloud is used, the ping latency drops to 1ms and that is around 32ms after the start of the experiment. This is

mainly due to the fact that the VM was dynamically shifted to the optimal DC following the movement of the

client. It shall be noted that during the VM migration, few ping losses were noticed.

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 33 / 255

Figure 14 Intercepting DHCP Packets for Location Mapper.

One major use case of Follow-Me-Cloud is its implementation in mobile networks. As such networks have

traditionally large user bases, scalability becomes of prime importance. As every moving end-point needs

certain OpenFlow rules to map between identifier and locator of the end-point, the size of the rule set depends

on the number of moving end-points. With millions of users and services, the rule set is beyond the

capabilities of current OpenFlow-enabled switches. But the build-up of networks from multiple switches

inherently provides a distribution of end-points to switches and therefore a distribution of OpenFlow rules.

The set of rules pertaining to a particular switch is therefore a fraction of the overall rule set. Our analysis

shows that the number of rules per switch is within the limits of currently available hardware (Bifulco et al.

2012).

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 34 / 255

Figure 15 Client ping latency with and without Follow-Me-Cloud.

Together with the OpenFlow rules on individual switches, the management of the rules at the Follow-Me-

Cloud controller is an issue for scalability, as the controller has to manage the rules of multiple switches. For

large networks, it is essential to realize a distributed controller in order to deal with the large size of the rule

set. Distribution can happen across two dimensions, namely network scope and controller role. The network

scope refers to assigning certain parts of a network to a particular controller. By narrowing the scope of the

assigned network slice, the number of rules managed by a single controller shrinks. A more detailed

assessment of the scalability of our Follow-Me-Cloud controller can be found in (Bifulco et al. 2012), opening

up new challenges for the community of OpenFlow researchers. Further results based on an analytical model

of Follow-Me-Cloud are available in (Tarik Taleb and Adlen Ksentini 2013).

2.4 Extensions and considerations

Taking into account the requirements identified so far with respect to networking aspects, this section explains

how OCCI and OpenStack can cope with it. Extensions to both are required.

2.4.1 OCCI Extensions

The inter-CSP approach (presented in section 2.2.4 and further detailed in appendix A.4) can be performed

using a possible extension of the OGF OCCI standard. Moreover, the steps detailed in appendix A.4 require

that both CSPs can naturally be connected to each other on lower levels (for example both CSPs are connected

to the Internet). The idea on how SLAs can be expressed and maintained over this link will be further

investigated in the next phase of the MCN project.

The OCCI is a standardized Interface and API for managing cloud resources. Although originally designed to

manage compute, storage and network resources, it is extensible. Through these extensions it is possible to

add new capabilities to the interface, such as the specification of network QoS parameters (e.g. bandwidth,

latency) and bridging functions.

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 35 / 255

OCCI is built around the idea of having multiple resources. Each of these resources is of a certain type/kind.

Compute resources can be seen as VMs and Network resources as switches and routers. OCCI defines the

means to link those resources of different kinds and thereby semantically express relationships. For example a

VM is connected to a particular network switch.

The overall OCCI specification is split into three main parts:

¶ A ócoreô, which documents how OCCI can be extended. (Nyren et al. 2011)

¶ An óinfrastructureô part, which describes how to manage Compute, Storage and Network resources.

(Edmonds and Metsch 2011a)

¶ And a óHTTPô rendering for dealing with the content-rendering for the used protocol (HTTP).

(Edmonds and Metsch 2011b)

The Infrastructure part of the OCCI specification describes, next to many other things, the means to interact

with network resources. These Layer 2 network resources can be Created, Retrieved, Updated and Deleted via

the OCCI interface. When this part of the interface was defined, the Quantum project for OpenStack was still

in its early stages. Since then Quantum has moved into the core of OpenStack and has been renamed to

Neutron.

Also, in the first months of the MCN project it has become clear that the OCCI interface, although developed

in parallel, can be used to manage networks through OpenStack Neutron. Within the project the existing

OCCI interface implementation for OpenStack shall be extended to support the management of networks

through OCCI.

OCCI can extend the Layer 2 network resources to become Layer 3 level ones by applying Mixins. These

Mixins can be seen as similar to Mixin in Programming Languages like Scala. As mentioned before compute

resources can be ólinkedô to network resources and thereby expressing connectivity. Similar to that, network

resources could be linked expressing a network setup. This next step in network management over OCCI will

be further investigated.

Therefore, in a first step the OCCI implementation of OpenStack will be enhanced to support the management

of Neutron. After that the linking capabilities will be further investigated.

Neutron support for the OCCI OpenStack implementation will not only be an exploitable project result but

also lead to a standardized interface for managing networks in clouds. This is also described in the DoW

(DoW 2012) as exposing ó[..] an API through Quantum that is used by higher-layers for availing of OpenFlow

functionality and management capabilitiesô. A standardized interface has the advantage that the SDN

implementation used by a CSP is abstracted. This is one of the major requirements for a clean interface

between the CC and the networking layer from this task. This network management enabled OCCI interface

can also be used to satisfy the needs for the work described in section 2.2.4 and further detailed in appendix

A.4.

Next to this the work done for extending the OCCI interface to support, Neutron may lead to changes of the

standard, which can be contributed back through MCNôs standardization activities.

2.4.2 OpenStack Extension

OpenStack provides by default a Networking API service which, being RESTful, can be easily accessed and

configured in a CRUD paradigm, enabling with ease its extension and addition of new features and

functionalities. This may be particularly interesting for possibly introducing, support to vendor-specific niche

operations.

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 36 / 255

Apart from the standard API operation, which already enables the configuration of Networks and related

subnets, as well as of the respective ports to be associated to virtual instances, the OpenStack Networking API

provides an extended set of features.

Some currently known and used API extensions for Networking in OpenStack are presented next along with a

short description:

¶ The Network Provider Extension ï this extension allows authorized OpenStack users to handle and

view the networking infrastructure and its attributes.

¶ The Layer-3 Networking Extension (Router) ï by resorting to Floating IPs, this extension allows

handling packets between internal and external networks.

¶ Quotas ï due to the need to limit each tenant according to the different plans or expected usage, a

per-tenant quotas can be assigned with this extension by an admin.

¶ Security Groups and Roles ï this extension allows the configuration of networking restrictions for

different groups and roles. Behaving similarly to a firewall, several attributes can be configured such

as the traffic direction under consideration in a rule.

¶ The Load Balancer-as-a-Service (LBaaS) Extension ï traffic load balancing across VMs is a

desirable feature which, due to its expected performance improvements, should be considered with

further care and is presented in more detail in section 7.2.

¶ The Virtual Private Network -as-a-Service (VPNaaS) Extension ï by resorting to this extension a

tenantôs network can be expanded across different network connectivity providers without networking

concerns about stands in between.

¶ The Domain Name System-as-a-Service (DNSaaS) Extension ï similarly to LBaaS, the impact of

providing DNSaaS to different possible services motivates a more detailed analysis which is presented

in section 7.1.

Despite providing a set of new features to OpenStackôs networking, these still lack some desirable

functionalities such as allowing the specification of QoS related parameters such as bandwidth or latency

when defining a network. Moreover, details about the improvement of already existing extensions, such as

DNS and LB are further discussed throughout this document.

2.4.3 Extensions for Follow-Me-Cloud

The controller architecture outlined above could be integrated with a CSP domain. A possible extension is to

enable such functionality in an open source cloud IaaS platform such as OpenStack that supports defacto-

standard networking APIôs (Neutron 2013a) for manipulating the tenant based virtualized networks. However,

from a networking perspective, given that VMs could be deployed across distributed data centres, another

possibility is to explore inter data centre connectivity for managing resources across the data centres under an

umbrella of a single logical controller entity. For VM movement, the OpenFlow controller entities in the two

domains should co-ordinate with each other for preserving the data plane traffic. This may include exchanging

the L2/3 (higher) information as well as the moved VM policies. Currently, quantum offers isolated domains

without any interface for enabling controller to controller communication in two domains. For MCN

architecture, such information could be exchanged by a common orchestrator entity that communicates with

two domains.

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 37 / 255

2.5 Relationship to other tasks

The following section details the relationship from this task to other tasks. For task 3.1 this is mainly towards

task 3.3. Task 3.2 will provide inputs towards this task, and this will be detailed in later sections.

2.5.1 Monitoring of data centre internal network and connectivity services

The monitoring of status and performance of the data centre internal network is fundamental to preserve the

user sessions based on Quality of Experience (QoE) metrics. In this context, the data plane traffic in the

OpenFlow network is monitored by the data centre OFC, through a dedicated data plane statistics module.

The module leverages the OpenFlow wire protocol for collecting various resource usage statistics from

switches, flow tables, ports etc. in the network in order to build a dynamic view of the network. The

OpenFlow wire protocol already has a built-in mechanism for querying the resource statistics at various

granularities. One possible example is to query the port usage: number of transmitted and received packets.

Another alternative could be to query the flow table statistics to determine the fair share of a flow in a shared

environment. Based on such raw data plane monitoring information, the statistics module could compute

various path parameters under different network load situations. Once these data plane metrics have been

elaborated at the controller, they can be exposed through the OFC north-bound towards higher layers of the

DC management system for taking decisions that would in turn improve the QoE of various user

applications/sessions.

Moreover, following the common monitoring approach adopted in the MCN architecture, the data centre

network statistics can be collected by specific instances of the MaaS and exposed on per-tenant and per-

service-instance basis to other MCN components. For example, these metrics could be further elaborated at

the SO for optimizing the placement of certain VMs during the service runtime. An example of optimization

decision could be the migration of a VM from one host server to another; in this case the real-time traffic flow

must be seamlessly redirected to another path within the DC, requiring the dynamic re-configuration of the

OpenFlow switches. This mechanism can be easily generalized to other scenarios where flows are re-directed

also across different DCs for virtual placement optimizations, load balancing, disaster recovery etc.

As shown in Figure 16, a fundamental requirement to allow the interaction with the monitoring system is the

on-demand provisioning of a dedicated ñMonitoring Agentò, to be instantiated jointly with the other

components of the MCN service instance that is using the data centre network resources and the connectivity

services to be monitored. This Monitoring Agent is specifically designed to collect networking statistics

through the network monitoring interfaces exposed at the data centre level and it is able to understand the

semantics of the networking metrics and translate them into the common language adopted at the MaaS core

component.

From the Pay-As-You-Go perspective, the network usage statistics collected by the OpenFlow controller

could be used for charging schemes/models that MCN project may use in the future. However, the task 3.1 is

concerned with collecting network usage statistics based on metrics e.g. individual flows, user, tenant, virtual

network, traffic across data centers etc. that an OpenFlow controller may aggregate at various time

granularities. As described above such metrics can be pushed towards the Monitoring-as-a-Service where

other MCN services may use them for charging/accountability or Pay-As-You-Go purposes.

Similarly, for network elasticity (scaling up and down) in the cloud deployment individual links between the

virtual machines, switches, NICs, across data centers etc. needs to be adjusted based on the current load

situations. The load should be monitored based on the statistics module; however, link aggregation needs to be

configured on the fly (e.g. OpenFlow configuration) that should reflect the current load situation on individual

links.

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 38 / 255

Figure 16 Collection of network monitoring information

2.6 Conclusions and future work

Task 3.1 highlights the networking aspects for supporting deployment of services, specifically MCN services,

in the cloud environment. The fundamental assumption is the existence of an IaaS layer e.g. OpenStack that is

used as a basis for deploying services across geographically distributed DCs. However, from the networking

perspective, the basic building block is the tenant based virtual network that is mapped to the physical

infrastructure in a CSP domain.

Further, for network virtualization an OpenFlow based network in assumed in each DC instance. Given the

requirement that services could be deployed across DCs, networking resources needs to orchestrated across

domains for seamless service delivery. Services themselves could be composed of other services or possibly

could be chained therefore inter-connection between services, traffic segregation of tenants (e.g. VXLANS),

fulfillment of QoS requirements between networking elements, traffic forwarding to correct service instance,

traffic steering, load balancing (with or without DNS), energy saving, tunneling, network statistics, OpenFlow

rules scaling, OpenFlow in service provider domain, routing, network elasticity, etc. can be addressed from

the networking perspective within this task.

From the SDN/OpenFlow perspective the prime objective is to materialize the networking orchestration

between domains in a programmatic/automated manner that should minimize the manual configurations

changes. This should be supported by providing the necessary interfaces to SDN/OpenFlow controllers for

supporting the services. For proof of concept, control application (Apps) against a specific SDN/OpenFlow

controller will also be implemented. For Follow-Me-Cloud, interaction between the two OpenFlow controllers

along with CSPôs middleware could be explored for supporting the required functionality that could also be

exposed through API (within or across CSPs). Overall, the networking functionality should be covered

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 39 / 255

through well-defined API's that could also support the OCCI interface for interoperability and should also be

aligned in the overall Neutron model in OpenStack.

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 40 / 255

3 Real-time Performance of Infrastructure Resource
Management Frameworks

The following sections describe the contributions from task 3.2, entitled ñReal-time Performance of

Infrastructure Resource Management Frameworksò.

3.1 Introduction

One of the key research challenges assigned to this task, as outlined in the proposal objectives, is to examine

ñHow to upgrade virtualisation and cloud computing middleware to support highly demanding, real-time

network applications and servicesò. To achieve this we need to begin by addressing factors that can

potentially lead to unpredictable performance, specific to multi-tenancy/shared environments, such as noisy

neighbour syndrome, whereby resources are monopolised by one or more users, while degrading performance

for others as a consequence.

One of the mid-term objectives outlined in the task 3.2 roadmap is to develop a comparison of virtualisation

technologies and match them against the performance requirements of MCN. Tuning and optimisation

techniques will also be evaluated to help determine ñbest fitò technologies for the different workload types.

We set a foundation for this work in the following sections.

Current metrics for the performance of CSPs can be unreliable and subject to variability. Therefore, another

important outcome of this task is to understanding how cloud performance can be measured as accurately and

meaningfully as possible. This will require a sound testing methodology and working knowledge of available

tools for performance analysis.

Performance monitoring and the optimisation of the infrastructure, specific to the workload characteristics and

performance requirements of each core MCN Service and supporting service will allow the management of

virtual infrastructure with the ability for reporting, as well as workflows used to manage the network and

physical servers.

In the following sections we document how this task has attempted to define MCN specific performance

requirements and workload characterisation, as well as examine the extent to which virtualisation technologies

and optimisation techniques can have an impact on performance. By matching potential virtualisation

technologies and optimisation techniques against specific performance expectations, task 3.2 brings to MCN

the knowledge base to help develop and deliver the infrastructural foundations necessary for the surrounding

tasks to build upon.

3.1.1 Problem description

VMs share resources and thus compete for them. The three main parameters applicable to performance are

latency, throughput and utilisation, which together reflect the overall efficiency of a given system. It must also

be determined to what extent reliability and stability play in overall performance. The relevance of certain

performance parameters will vary depending on the performance requirements of each component within the

MCN Services. To effectively address the general challenges described here we refer back to the original

Description of Work for task 3.2. A roadmap was drawn up early on in accordance with the DoW (DoW

2012) to address the challenges related to performance within the context of MCN. We outline each stage of

the roadmap in the Objectives below, while the short to mid-term goals set out in the roadmap are documented

in the sections that follow.

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 41 / 255

3.1.2 Objectives

The task 3.2 DoW proposes that a ñmethodology will be established and suitable benchmarks selectedò(DoW

2012 p. 52). A number of methodologies were evaluated and the group decision was made to focus on the

USE Method (see section 3.2.1) for its ability to provide a quick, comprehensive overview of system health,

while identifying potential bottlenecks and errors. Furthermore, it is advised that a checklist be developed to

direct further investigation and ultimately help decide which benchmarking tools to run, and more specifically

which metrics are most appropriate. A number of tools were evaluated for use in MCN, from dynamic tracing

frameworks such as DTrace and System Tap for troubleshooting kernel and application problems on

production systems in real-time, to open-source benchmarking tools like Phoronix Test Suite and FunkLoad.

(See Appendix B.5)

In section 3.3, we essentially trial these methodologies and tools to test atomic services with a series of

preliminary performance tests. To begin with, we apply the USE Method to help us understand the

characteristics of two cloud stacks, namely OpenStack (RackSpace) and CloudSigmaôs proprietary stack, by

creating a resource list and functional diagram for both.

The next important step expressed in the DoW is the need to define ñsuitable workload scenarios [é] used

for performance characterisationò. In parallel to the preliminary testing we began gathering performance

requirements in relation to the five core MCN Services; IMSaaS, EPCaaS, DSSaaS, RANaaS, CDNaaS. We

make our first attempt at understanding typical workloads associated with each of the five core MCN

Services. (See Appendix B.1)

An ongoing effort is to research the state of the art with regard to virtualisation technologies and attempt to go

beyond state of the art with certain optimisation and tuning techniques. As proposed in the DoW, ñoffering

different virtualisation technologies through a homogenous interface appropriate to the presented workload

[é] techniques will be a service offering differentiatorò. In section 3.4, a number of optimisation and tuning

techniques which include, adjusting hypervisor settings, enhancing iSCSI for storage networking, storage

optimisation and network optimisation are shown. We have begun research into SDN and how affinity groups

can be integrated with OpenFlow. This will be carried through into year two in consultation with task 3.1.

We evaluate SmartOS, which used in combination with OpenStack is currently being considered within the

project as a good open source solution. We will continue to evaluate this option going into year two as well as

make a comparison between SmartOS and alternatives such as OmniOS, which has most of the same features

but in a normal install-to-disk configuration.

We have also taken the opportunity to include research into Admission Control Algorithms (ACA) for MCN

in this section despite this not having been outlined in the original DoW.

In section 3.5, we highlight our relationships with other tasks, such as providing a review into monitoring the

performance of cloud infrastructure to inform work on the CMMS undertaken in tasks 3.3. We will continue

to contribute to building Analytics-as-a-Service with particular focus on the part Admission Control

Algorithms can play.

Finally, in section 3.6, Conclusions and Future Work, we detail further collaboration for year two as we move

into the next stage outlined in the roadmap.

3.1.3 Requirements

Performance testing within the scope of MCN is dependent on the development of performance requirements

particular to each MCN Service. By predicting workloads we can begin to understand how to provision and

scale resources effectively. A questionnaire was created and distributed amongst the owners of the services in

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 42 / 255

an attempt to define the resource requirements of each Service. For the corresponding completed

questionnaires, see appendix B.1.

Though it is generally recognized that there is a need for having control over infrastructure performance, the

first answers to the questionnaire have been fairly qualitative in that no clear figures about the critical aspects

have been provided. In fact, with MCN Service performance as a whole, much depends on the service quality

as it is perceived by the service users. A clear understanding of how the Services are composed, and what

technologies are to be used, is not yet entirely achieved at this point in time. This is expected to become more

clearly understood in year two, where we will be able to focus more on optimizing performance.

The next phase of the project will allow for more detailed analysis of the workload given that first prototypes

(and therefore sample workloads) will be available for performance testing. The methodologies and first

performance tests conducted now, will allow for a fast understanding of the potential performance issues once

typical MCN workloads are available.

Currently, it seems that general consensus is given to adopt Linux based OSs with some preference for KVM

hypervisors. Other hypervisors such as Xen are also under consideration and will be evaluated against KVM

early in year two of the project. A partial evaluation is presented in a comparative table in Appendix B.2. No

evidence for high performance computing has arisen thus far: most answers refer to more or less off-the-shelf

x86 platforms with standard RAM HD equipment. However, in a few cases potential performance issues have

been already focused.

¶ IMSaaS highlight that for the HSS to operate effectively, high computing power for the authentication

procedures and high-speed access to the DB may be required and identify a possible RAM bottleneck

in the xCSCF implementation.

¶ Another critical situation is foreseen by EPCaaS in which the processing delay, though minimized

through server replication, might still remain critical both for the User Plane and the Control Plane

processing.

¶ RANaaS implementation implies a critical issue about network connection latency over a CPRI Layer

1 interface between the BBU and the RRH where a maximum 150µs figure is needed over and up to

15Km link.

We consider the gathering of performance requirements to be an ongoing process and therefore we anticipate

further refinement to be carried out in the beginning of year two of the project. Once test scenarios are further

developed we will gain more insight into the specific performance requirements and the respective

performance metric ranges.

3.2 Performance analysis methodology

Performance testing is a broad term that can refer to many different types of testing, each serving a different

purpose and each providing its own level of insight into performance. For example, testing can be used to

measure what parts of an existing system are causing performance issues. In this instance the USE Method,

covered directly below, could be effective in identifying possible bottlenecks, and therefore potentially solve

performance issues before having to resort to using tools. Alternatively, testing with a number of

benchmarking tools can also be used to simply demonstrate that a particular system can meet specific

performance criteria. In this case, a somewhat more flexible methodology might be more appropriate. This

could involve a series of load and stress tests like those summarised in section 3.3.3 and documented in

Appendix B.2. In conclusion, methodologies must be selected according to the particular type of testing

required.

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 43 / 255

The following section is concerned with the USE Method, and how it compares with other methods designed

to identify performance issues, such as the Problem Statement Method, the Workload Characterisation

Method and the Drill-Down Analysis Method. What these particular methods have in common is that they

each have the potential to solve performance issues before any tools are called upon.

As mentioned above, in section 3.3.3, we present a testing approach based on the assertion that the purpose of

performance testing at this stage of the project is to compare the performance between potential systems and

to demonstrate how a particular system meets performance criteria with respect to specific workloads.

3.2.1 The USE Method

The USE Method was developed by Brendan Gregg from the US cloud infrastructure company Joyent
1

(Brendan Gregg 2012) The method is intended for use at the beginning of a performance test to check overall

system health by identifying bottlenecks and errors. For each system, resource metrics for Utilisation,

Saturation, and Errors (USE) are gathered. From there, specific areas should stand out for further, more

focused investigation. The method was developed by Gregg to address what he sees as shortcomings in other

commonly used methodologies in which performance is often analysed randomly. The USE Method attempts

to provide a starting point whereby components, and the interactions between components, are first

methodically determined and then analysed.

3.2.1.1 Resource list

The first step is to build up a list of resources. The following example provided by Gregg is a generic list for

servers: CPUs: sockets, cores, hardware threads (virtual CPUs); Memory: DRAM; Network interfaces:

Ethernet ports; Storage devices: I/O, capacity; Controllers: storage, network cards; and Interconnects: CPUs,

memory, I/O.

3.2.1.2 Metrics

Once a list of resources has been made the next step is to consider the metric types: utilization, saturation and

errors. Below is an example of resources and corresponding metrics suggested by Brendan Gregg.

Table 3 List of resources and corresponding metrics (Brendan Gregg 2012)

Resource Type Metric

CPU Utilisation CPU utilisation (either per-CPU or a system-wide average)

CPU Saturation Dispatcher queue length (aka run-queue length)

Memory capacity Utilisation Available free memory (system-wide)

Memory capacity Saturation Anonymous paging or thread swapping (maybe ñpage scanningò too)

Network interface Utilisation RX/TX throughput / max bandwidth

Storage device I/O Errors Device errors (ñsoftò, hardò, é)

Storage device I/O Utilisation Device busy percent

1 http://www.joyent.com

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 44 / 255

Storage device I/O Saturation Wait queue length

3.2.1.3 Functional block diagram

By using a server functional block diagram, we are able to analyse every component in the data path. A

functional block diagram (see Figure 17) shows relationships between resources, which can be useful for

isolating bottlenecks in the flow of data. Performance analysis can be complicated because of the number of

components in a system and their relationships. Components that work well in isolation may present

performance issues and limitations when they interact with one another. Each bus on the functional diagram

should be annotated with its maximum bandwidth. It is then possible to see potential bottlenecks before

testing even begins.

Figure 17 Example functional block diagram

3.2.1.4 Custom checklist

For each system resource, metrics for utilization, saturation and errors are identified and checked. Any

highlighted issues can then be investigated further using the most appropriate methods and tools. The steps to

follow are as follows (see Figure 18): (1) identify resources; (2) choose resource to check (CPU, memory,

storage, network); (3) check for errors; (4) check utilisation (how busy various resources are during

performance test, the total amount of resources consumed are measured against resources allocated); (5) check

saturation (is there more work that can be delivered?); (6) problem identified.

Copyright Ò MobileCloud Networking Consortium 2012-2015 Page 45 / 255

Figure 18 The USE Method Checklist

3.2.1.5 Interpretation

The USE Method is helpful in identifying which metrics to use. The next step is to learn how to read them and

interpret their current values. The following are some general suggestions for interpreting metric types:

Utilisation : 100% utilization most often signifies a bottleneck. Utilisation upward of 70% can cause multiple

problems also. It should be noted that interpretation can be skewed when utilisation is averaged out over a

longer period of time. For example, short spikes of 100% utilisation can be missed but still result in noticeable

degradation in performance.

Saturation: any degree of saturation can be a problem (non-zero). This may be measured as the length of a

wait queue, or time spent waiting on the queue.

Errors: non-zero error counters are worth investigating, especially if they are still increasing while

performance is poor. It is easy to interpret the negative case: low utilization, no saturation, no errors.

Narrowing down the scope of an investigation can quickly bring focus to the problem area.

3.2.1.6 The USE method in relation to other methodologies and tools

We have agreed that the USE method will be used to provide a starting point to initiate further performance

analysis. It is not the intention to follow the USE method exclusively, as there are other methods and tools that

can be used independently or in parallel that may provide more focused analysis. Gregg admits the USE

method alone will not solve every problem and recommends it be used as one tool, as part of a larger toolbox.

In the following sections we propose some other methodologies that may be used independently or alongside

the USE Method as a means to develop a thorough testing strategy. Each methodology has been evaluated and

documented briefly to highlight potential advantages to being used within the context of MCN.

